|
Wake turbulence is turbulence that forms behind an aircraft as it passes through the air. This turbulence includes various components, the most important of which are wingtip vortices and jetwash. Jetwash refers simply to the rapidly moving gases expelled from a jet engine; it is extremely turbulent, but of short duration. Wingtip vortices, on the other hand, are much more stable and can remain in the air for up to three minutes after the passage of an aircraft. Wingtip vortices occur when a wing is generating lift. Air from below the wing is drawn around the wingtip into the region above the wing by the lower pressure above the wing, causing a vortex to trail from each wingtip. Wake turbulence exists in the vortex flow behind the wing. The strength of wingtip vortices is determined primarily by the weight and airspeed of the aircraft.〔http://www.faa.gov/training_testing/training/media/wake/04SEC2.PDF〕 Wingtip vortices make up the primary and most dangerous component of wake turbulence. Lift is generated by high pressure below the wing and low pressure above the wing. As the high-pressure air moves around the wingtip to the low pressure, (high pressure always moves towards lower pressure areas) the air rotates, or creates a horizontal "tornado" behind the wings. This tornado sinks lower and lower until it dissipates. Wake turbulence is especially hazardous in the region behind an aircraft in the takeoff or landing phases of flight. During take-off and landing, aircraft operate at high angle of attack. This flight attitude maximizes the formation of strong vortices. In the vicinity of an airport there can be multiple aircraft, all operating at low speed and low height, and this provides extra risk of wake turbulence with reduced height from which to recover from any upset. ==Fixed wing – level flight== At altitude, vortices sink at a rate of 90 to 150 metres per minute and stabilize about 150 to 270 metres below the flight level of the generating aircraft. For this reason, aircraft operating greater than 600 metres above the terrain are considered to be at less risk.〔() ''Jump Seat'' (FLYING column by Boeing 777 captain Les Abend) described an upset incident when his B777 was high above the Atlantic Ocean, as it interacted with a heavy Airbus airliner several miles ahead and slightly above his track.〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「wake turbulence」の詳細全文を読む スポンサード リンク
|